Evolutionary dynamics of time-resolved social interactions

Alessio Cardillo
Department of Condensed Matter Physics – University of Zaragoza
&
Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
http://bifi.es/~cardillo/

Thursday 6 June 2013, NetSci 2013, Copenhagen, Denmark
Acknowledgements

http://arxiv.org/abs/1302.0558

Collaborators

Giovanni Petri ISI Turin (Italy)
Vincenzo Nicosia Queen Mary University London (UK)
Roberta Sinatra Northeastern University (USA)
Jesús Gómez-Gardeñes University of Zaragoza (Spain)
Vito Latora Queen Mary University London (UK)
University of Catania (Italy)
Outline

- Short Introduction on Evolutionary Game Theory
Outline

- Short Introduction on Evolutionary Game Theory
- Time Varying Graphs
Outline

- Short Introduction on Evolutionary Game Theory
- Time Varying Graphs
- Datasets
Outline

- Short Introduction on Evolutionary Game Theory
- Time Varying Graphs
- Datasets
- Results
Outline

- Short Introduction on Evolutionary Game Theory
- Time Varying Graphs
- Datasets
- Results
- Conclusions.
Motivation

Foreword

Dynamical processes acting on time varying graphs behave differently than on static graphs.

Motivation

Question:

Does time resolution affects the classical results about the enhancement of cooperation driven by static networks?
The game: Social Dilemma

Consider a pairwise interaction where individuals face a social dilemma between two possible strategies: *Cooperation* (C) and *Defection* (D). Such dilemmas can be encoded into a two-parameter game described by the payoff matrix:

\[
\begin{pmatrix}
C & D \\
C^T & S \\
D & T & P
\end{pmatrix} = \begin{pmatrix}
C & D \\
1 & S \\
T & 0
\end{pmatrix},
\]
Short Introduction on Evolutionary Game Theory

Mean field case

\[\begin{pmatrix} C & D \\ C & 1 & S \\ D & T & 0 \end{pmatrix} \]

We consider three different kinds of social dilemmas, namely:

- Harmony Game (HG)
- Chicken Game (CG)
- Stag Hunt (SH)
- Prisoner's Dilemma (PD)
Short Introduction on Evolutionary Game Theory

Mean field case

\[
\begin{pmatrix}
 C & D \\
 C & 1 & S \\
 D & T & 0
\end{pmatrix},
\]

We consider three different kind of social dilemmas, namely:

- **Harmony Game (HG)**
- **Chicken Game (CG)**
- **Stag Hunt (SH)**
- **Prisoner’s Dilemma (PD)**
Short Introduction on Evolutionary Game Theory

Mean field case

\[
\begin{pmatrix}
C & D \\
C & 1 & S \\
D & T & 0
\end{pmatrix},
\]

We consider three different kind of social dilemmas, namely:

- Harmony Game (HG)
- Chicken Game (CG)
- Stag Hunt (SH)
- Prisoner’s Dilemma (PD)
Short Introduction on Evolutionary Game Theory

Mean field case

\[
\begin{pmatrix}
C & D \\
C (1 & S) \\
D (T & 0)
\end{pmatrix},
\]

We consider three different kinds of social dilemmas, namely:

- Harmony Game (HG)
- Chicken Game (CG)
- Stag Hunt (SH)
Short Introduction on Evolutionary Game Theory

Mean field case

\[
\begin{pmatrix}
C & D \\
C & 1 & S \\
D & T & 0
\end{pmatrix},
\]

We consider three different kind of social dilemmas, namely:

- Harmony Game (HG)
- Chicken Game (CG)
- Stag Hunt (SH)
- Prisoner’s Dilemma (PD)
Short Introduction on Evolutionary Game Theory

Strategy Update

After all the individuals have played with all their neighbors in the network, they update their strategies as a result of an evolutionary process. To update the strategies of agents we consider the so-called Fermi Rule:

\[
P_{i \rightarrow j} = \frac{1}{1 + e^{-\beta(p_j - p_i)}} ,
\]

(1)
Time Varying Graphs

\[G1 \quad G2 \quad G3 \quad G4 \]

\[\tau \]

\[n \tau = \Delta t \]
Datasets

MIT Reality Mining

Data of proximity interactions collected through the use of Bluetooth-enabled phones distributed to a group of 100 users, composed by 75 MIT Media Laboratory students and 25 faculty members recorded over a period of about six months.

\[
\begin{array}{|c|c|c|c|c|}
\hline
M & N & \tau & E^* & \langle k \rangle_{agg} \\
\hline
41291 & 100 & 5 \text{ min} & 2114 & 42 \\
\hline
\end{array}
\]

The data set consists of proximity measurements collected during the IEEE INFOCOM’06 conference held in a hotel in Barcelona between 23-rd and 29-th of April 2006.

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>τ</th>
<th>E^*</th>
<th>$\langle k \rangle_{agg}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2880</td>
<td>78</td>
<td>2 min</td>
<td>2730</td>
<td>70</td>
</tr>
</tbody>
</table>

Datasets

Experimental setup:

1. A number n of graphs corresponding to a time interval equal to Δt is projected onto a single weighted one.
Datasets

Experimental setup:

1. A number \(n \) of graphs corresponding to a time interval equal to \(\Delta t \) is projected onto a single weighted one.
2. Each agent \(i \) plays with all her \(k_i \) neighbors and accumulate a payoff \(p_i \).
Datasets

Experimental setup:

1. A number n of graphs corresponding to a time interval equal to Δt is projected onto a single weighted one.
2. Each agent i plays with all her k_i neighbors and accumulate a payoff p_i.
3. Agents update simultaneously their strategies.
Datasets

Experimental setup:

1. A number n of graphs corresponding to a time interval equal to Δt is projected onto a single weighted one.
2. Each agent i plays with all her k_i neighbors and accumulate a payoff p_i.
3. Agents update simultaneously their strategies.
4. Apply points from 1 to 3 on the next time snapshots until stationary state is reached.
Datasets

Experimental setup:

1. A number n of graphs corresponding to a time interval equal to Δt is projected onto a single weighted one.
2. Each agent i plays with all her k_i neighbors and accumulate a payoff p_i.
3. Agents update simultaneously their strategies.
4. Apply points from 1 to 3 on the next time snapshots until stationary state is reached.

- Initial fraction of cooperators $f_c(0) = 0.5$ randomly distributed.
- Payoff parameters $T \in [1, 2]$ $S \in [-1, 1]$.
- Two kind of time sequence: the real one and a randomized version.
- Averaged over 50 different realizations.
Time series

Reality

Infocom
We measure the cooperation level as:

\[\langle C(T, S)_{\Delta t} \rangle = \frac{1}{Q} \sum_{i=1}^{Q} \frac{N_i^c}{N} , \]
Overall level of cooperation \(C_{tot}(\Delta t) \)

\[
C_{tot}(\Delta t) = \frac{1}{C_{tot}(M_T)} \int_{-1}^{1} \int_{0}^{2} C(T, S) dS dT
\]
Summing up . . .

Take home messages

- The level of cooperation achievable on time-varying graphs crucially depends on the temporal resolution, i.e. on the length of the aggregation interval used to construct each graph.
Take home messages

- The level of cooperation achievable on time-varying graphs crucially depends on the temporal resolution, i.e. on the length of the aggregation interval used to construct each graph.

- The temporal ordering of interactions hinders cooperation, so that temporally reshuffled versions of the same time-varying graph usually exhibit a considerably higher level of cooperation.
Summing up . . .

Take home messages

- The level of cooperation achievable on time-varying graphs crucially depends on the temporal resolution, i.e. on the length of the aggregation interval used to construct each graph.

- The temporal ordering of interactions hinders cooperation, so that temporally reshuffled versions of the same time-varying graph usually exhibit a considerably higher level of cooperation.

- The average size of the giant component across different consecutive time-windows is indeed a good predictor of the level of cooperation attainable on time-varying graphs.
Summing up . . .

Take home messages

- The level of cooperation achievable on time-varying graphs crucially depends on the temporal resolution, i.e. on the length of the aggregation interval used to construct each graph.
- The temporal ordering of interactions hinders cooperation, so that temporally reshuffled versions of the same time-varying graph usually exhibit a considerably higher level of cooperation.
- The average size of the giant component across different consecutive time-windows is indeed a good predictor of the level of cooperation attainable on time-varying graphs.

What’s next? (Work in progress . . .)

- Trying to find bigger datasets.
Take home messages

- The level of cooperation achievable on time-varying graphs crucially depends on the temporal resolution, i.e. on the length of the aggregation interval used to construct each graph.
- The temporal ordering of interactions hinders cooperation, so that temporally reshuffled versions of the same time-varying graph usually exhibit a considerably higher level of cooperation.
- The average size of the giant component across different consecutive time-windows is indeed a good predictor of the level of cooperation attainable on time-varying graphs.

What’s next? (Work in progress . . .)

- Trying to find bigger datasets.
- Use different randomization methodologies?
Time series

- σ_{on} → Contact duration.
- σ_{off} → Inter-contact time.